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We propose a new similarity measure operating in an abstract space spanned by properties evaluated at bond
critical points defined by the theory ofAtoms in Molecules. Consequently, we represent molecules compactly
and reliably, extracting the relevant information from their ab initio wave function. Typical problems of
continuous quantum similarity measures are thereby avoided. The practical use of this novel method is
adequately illustrated via the Hammett equation forpara andmetasubstituted benzoic acids. On the basis of
our definition of distances between molecules in BCP (Bond Critical Point) space, we are able to reproduce
the experimental sequence of acidities determined by the well-knownσ constant of a set of substituted
congeners. Moreover, our approach points out where the common reactive center of the molecules is. Due to
these promising results we embark on a research program systematically addressing further issues outlined in
this work. The generality and feasibility of our approach will enable predictions in medically related QSARs.

1. Introduction

The design of a novel or improved drug is an extremely
challenging but highly rewarding task, which explains the
current plethora of approaches. One group of techniques resides
under the heading of what is commonly referred to as “quantita-
tive structure-activity relationships” (QSAR).1 This approach
is based on the simple idea that the chemical behavior of a
molecule in a chemical environment (e.g., reactivity, ligand
docking, acidity) is due to the very structure of that molecule.
Put in almost trite terms this is equivalent to the statement that
“a molecule acts like it acts because it is what it is”. An
important consequence of this apparently trivial assumption is
that we need not understand the often extremely complex details
of the molecule’s action in the chemical environment. In other
words, using the data of one molecule’s action we can predict
the action of another closely related molecule by merely
comparing howsimilar the original molecule is to the other
one. This is the basis of themolecular similarity2 postulate,
which we adopt in this and future work.

The new exciting field of combinatorial drug discovery3

recently emerged from advances in high-throughput screening
and solid-phase organic synthesis. Despite great enthusiasm for
the concomitant concept of “molecular diversity”, it has been
argued that combinatorial drug design does not obviate “computer-
assisted drug design” (CADD).4 Indeed, the mass screening
brought about by combinatorial chemistry should not imply an
irrational brute force method but should be combined with
“rational drug design”, as advocated by Martin et al.5 Encour-
aged by the continuing prominence of molecular similarity
measures, we embarked on a program of molecular similarity
research based on the theory ofAtoms in Molecules(AIM). 6,7

This theory operates on the electron density obtained by ab initio
calculations. In view of the spectacular hardware developments
of recent years, all required information of a single thirty-atom
molecule can be obtained in several hours. However, to perfectly
compete with diversity screening techniques, millions of
compounds would have to be processed by computers in less
than a month. This is currently not feasible with the typical
CPU power available, but then this is not the goal of our

research. Our goal is to extract detailed but compact electronic
structure information out of available wave functions and
transfer it to a QSAR problem, in an attempt to obtain insight
in the cause of a given molecule’s activity. For example, we
want to know where the active center of the molecule is.

This contribution is the first of a series of papers proposing
a useful method to measure molecular similarity employing ab
initio calculations. Here we discuss the methodology of our
approach, and discuss the practicalities arising from full program
implementation. To show that our approach works in real cases
we present a successful example in connection with the oldest
known QSAR: the Hammett relation for substituted benzoic
acids.

2. Brief Review of “Atoms in Molecules”

Almost three decades ago the foundation of the theory of
“Atoms in Molecules” (AIM) was laid by the realization that a
molecule could be naturally partitioned into atoms8 whose
energy can be precisely defined using quantum mechanics.
Indeed, each atom obeys the virial theorem in the same way
the whole molecule does. The ability to define the energy of
an atom inside a molecule is most remarkable and renders the
atomic subspace into a unique portion of space dominated by
the nucleus it contains. One of the consequences of this
partitioning is that atoms exhibit a bewildering variety of shapes,
which reflects the uniqueness of each “molecular atom” and
the complexity of chemistry itself.

Over the years AIM has evolved into a program to bridge
the gap between modern ab initio wave functions and chemical
insight. One of the main lines of thought in the development of
this program is the use of the electron distributionF and related
quantities such as the Laplacian ofF (or ∇2F) as a starting point.
The electron distribution is a common platform to a host of
computational schemes such as the standard SCF-LCAO-MO
technique, grid-based methods and even experiment (X-ray
diffraction). In other words, many different levels of theory
(including basis set types) ultimately lead toF, which can also
be experimentally observed. If we takeF as the source of
information to study a considerable subset of a molecule’s
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chemical characteristics, ourF-based concepts will hold inde-
pendent of howF has been obtained. In contradistinction, several
population analyses for example only exist within a specific
theoretical or computational framework.

An extensive review of AIM would encompass a full
discussion of the topology ofF including the powerful yet simple
concept of thegradient Vector field. For a comprehensive
account, the reader is referred to ref 9. For the purpose of this
paper we only focus on the so-calledbond critical points(BCP).
These are points in real 3D space where the gradient of the
electron distribution vanishes (or∇F ) 0) and where the Hessian
of F (or ∇∇F) has two negative eigenvalues and one positive
one. These remarkable points occur roughly between two bonded
nuclei and are part of a more complex topology ofF, which we
cannot review within the present scope. The Hessian∇∇F is
basically a matrix describing all possible second derivatives of
F with respect to position coordinatesx, y, andz. The reason
we look at the eigenvaluesλi is because they express the local
curvature ofF in a point independent of the choice of molecular
coordinate system. By convention they are ordered as follows:
λ1 < λ2 < λ3. Consequently, at a BCP,λ1 < λ2 < 0 andλ3 >
0. The latter positive curvature is associated with an eigenvector
that is tangent to thebond path(BP). The BP is a curve in real
space linking two bonded nuclei along whichF is a maximum
with respect to any neighboring line. The BCP lies on the BP
and therefore it adopts the property that defines the BP; i.e., at
the BCPF attains a maximum value for any displacement toward
it in a plane perpendicular to the BP. This is made clear in Figure
1.

3. Quantum Molecular Similarity Measures

Many techniques to measure similarity have been proposed
entirely outside the realm of quantum similarity. Examples
encompass algorithms for clustering 2D structures, similarity
searching through 3D databases, molecular surface matching,
neural networks, shape-group methods to describe the topology
of molecular shape, shape-graph descriptions and CoMFA
(Comparative Molecular Field Analysis). Ultimately, any mo-
lecular similarity method must incorporate conformational
flexibility requiring special techniques that avoid typical com-
binatorial explosions. A recent discussion of a fair cross-section
of methods can be found in a book by Dean.2 In this paper we
focus on similarity measures operating on quantum mechanical
information.

In 1980 Carbo´ et al.10 addressed for the first time the
fundamental question “How similar is a molecule to another?”
from a quantum chemical point of view. On the basis of the
assumption that similar molecules must have similar electron

distributions, they proposed the matching measure between
molecules A and B to be simplyεAB ) ∫V|FA - FB|2 dV. After
some rearrangement, the computation ofεAB comes down to
rotating and translating the compared molecules in order to
maximize the value of the integral∫VFAFB dV.

During the last two decades the main idea behind this index
has proved its merit in view of the considerable attention it has
received in the literature (see ref 11 and references therein].
However we should be aware that focusing all attention on the
electron distribution is a choice and that a measure incorporating
alternative quantities may prove to be closer to the ultimate
similarity measure. In fact some methods are entirely based on
the electrostatic potential,12 the momentum density,13 or just
the 3Dshapeof the electron distribution.14 But then, again, the
role of F as the ultimate source of all information about a
molecule cannot be underestimated. For example, the electro-
static potential is defined as an integral ofF weighted by|r -
r ′|-1 and the local electronic kinetic energy densityG(r ) has
recently been evaluated from the experimental electron density.15

Below we mention a few typical problems that arise in the
evaluation of Carbo´-like indices. First of all, the index is
expensive to compute for ab initio wave functions of reasonable
quality (i.e., at least HF/6-31G*) especially because it has to
be calculated for every pair of compared molecules. To remedy
this problem, a method to approximateF by fitting spherical
Gaussian functions was proposed.16 Second, two molecules
under comparison have to be superimposed so as to maximize
the index. This is a very time-consuming procedure further
hampered by multiple (undesirable) maxima. Also the index is
dependent on the method chosen for molecular matching.17

Third, it is not clear if the comparisons should be limited to
small regions or performed over the whole molecule. To patch
up this difficulty, a method with arbitrary and nonunique
fragment densities has been presented.18 Finally, the measure
is severely biased by core density contributions, which led to
the introduction of valence electron density similarity mea-
sures,19 addition of nuclear charges to screen the core electronic
charge,20 and also to indices based on the electrostatic potential
and field.21

In an attempt to formulate a fast, reliable, and therefore useful
molecular similarity index that is free of the aforementioned
problems, we want to take full advantage of the insight that
AIM offers into the electronic structure of a molecule. Since
this work isnot intended to be a technical improvement of the
Carbómethod (aiming at a CPU time gain or computational
stability), we have not revisited our Hammett case study by his
method. Instead, we look at the quantum similarity issue
independently from a philosophically different point of view,
encouraged by observations described in the next section.

4. BCP Space

The integrals appearing in typical quantum similarity mea-
sures essentially express that the electron densityin eVery point
of spacecontributes to the comparison between two molecules.
Although one cannot argue against the completeness of this
approach, it leads to chemically unimportant regions (such as
the nuclear cores), greatly influencing the similarity measure.
Is there any way we could focus on a few remarkable points in
the molecule, thereby replacing the integral by a sum? We
believe that AIM provides such a set of points in a simple and
unbiased way, namely the BCPs.

The BCPs are topologically unique points in space that can
easily be located if a robust algorithm is used.22 This algorithm
is an eigenvector following method, which is superior to the

Figure 1. Schematic representation of abond critical point (BCP)
between two nuclei A and B. The curve linking A and B (the bond
path) is not necessarily a straight line in general. The electron
distributionF increases toward the BCP in a plane locally perpendicular
to the bond path. Note that at the BCPF is a minimum along the bond
path.

2884 J. Phys. Chem. A, Vol. 103, No. 15, 1999 Popelier



Newton-Raphson method in that it is able to locate critical
points starting from a poor guess. It has been shown before
that several properties evaluated at the BCP summarize the
characteristics of the corresponding bond. For example, the
electron density at the BCP, denoted byFb, determines a bond
order that yields values of 1.0, 1.6, 2.0, and 2.9 for the C-C
bonds in ethane, benzene, ethene, and ethyne, respectively.23

Also strong correlations have been found between bond energy
andFb.24

As a further example, the Laplacian of the electron density
at the BCP, denoted by∇2Fb, distinguishes two broad classes
of bonds: if∇2Fb < 0, the bond is a so-calledshared interaction,
but if ∇2Fb > 0, the bond is called aclosed-shell interaction.
Covalent bonds belong to the former class, and ionic bonds,
hydrogen bonds, and van der Waals bonds belong to the latter.
The distinction between these two types of interaction can be
rationalized via the equation∇2Fb ) λ1 + λ2 + λ3. If the positive
eigenvalueλ3 dominates, density is accumulated along the bond
path toward the nuclei. If the negative eigenvalues dominate,
then the electron density accumulation in the plane perpendicular
to the bond path is prominent. This reflects the large charge
buildup between two bonded nuclei, which is reminiscent of
covalent bonding. The quantity∇2Fb provides, of course, more
subtle information than the crude classification explained above,
as demonstrated in early seminal work on bond properties in
hydrocarbons.25

A third important quantity describing another facet of the
electronic structure of a bond is the ellipticity at the BCP,
denoted byεb or simplyε. The ellipticity is defined asλ1/λ2 -
1 and is always positive becauseλ1 < λ2 < 0. Since|λ1| > |λ2|
the latter corresponds to the “soft” curvature. A contour diagram
of F in the plane of the eigenvectors corresponding toλ1 andλ2

shows a set of nested ellipses (or circles ifλ1 ) λ2). Clearly,λ2

corresponds to the major axis because in this direction fewer
contour lines are crossed per unit length as a result of the soft
curvature. The ellipticity measures the susceptibility of ring
bonds to rupture and provides a quantitative generalization of
the σ-π character of a bond.

It has been shown before25 that the descriptorsFb, ∇2Fb, and
ε are very successful at translating the predicted electronic
effects of orbitals theories into observable consequences inF.
The large body of data presented in that work for hydrocarbons
(Table 4 in ref 25) is astonishingly consistent and reveals many
subtleties despite the elementary basis set. In particular, BCP
properties detect conjugation, subtle delocalization effects and
hyperconjugation. They distinguish aromatic and anti-aromatic
character and parallel bond order and prove that three-membered
saturated hydrocarbon rings act like double bonds. The confi-
dence in the main idea behind our molecular similarity program
is largely based on the early observations of Bader and
co-workers25 and further observations made by the present
author in connection with the well-known drug haloperidol2

discussed below.
The electron distribution, its Laplacian, and the ellipticity are

in fact three components of a so-called chemical descriptor
vector.26 Each vector describes a bond in a three-dimensional
BCP space. Of course the dimensionality of the BCP hyperspace
can be increased by adding more components such as the kinetic
energy densityKb. Thus each molecule is represented by just a
handful of numbers, being the components of the vectors
describing the molecule’s bonds. The basic working hypothesis
is thatsdisregarding several technical issuessthe molecule is
completely and accurately described in a compact and abstract
space called BCP space. As a result, similarity measures are

reduced todiscretedistance-like measures in BCP space without
loosing their quantum mechanical basis.

Some advantages to this way of tackling similarity become
clear immediately. First there is no need to superimpose
molecules in real space, which is a cumbersome procedure. In
fact the molecule’s absolute orientation is lost in BCP space
but in our approach this information is not needed anyway. The
only caveat is that two molecules with different handedness are
mapped into the same coordinates in BCP space, but this lost
information can easily be added to the BCP properties as an
extra discrete dimension. Second, comparisons over restricted
regions of the molecule are straightforward because of the
discrete nature of the representation. Moreover, the possibility
of including only a part of the molecule in the similarity
calculation is the key to find the active center of a molecule in
a chemical environment, as will become clear from our Hammett
QSAR example. Finally, our method is in no way biased by
the core density but includes it in a more balanced way. Indeed,
it has been shown that the core density is an important
contributor to BCP properties. If it is omitted such as in
semiempirical wave functions27 (or wave functions obtained with
the effective core potential (ECP) or valence density plane wave
approximation), then severely distorted or corrupted topologies
appear. In other words, the absence of core densities in these
models often causes the absence of the BCP, which proves that
they influence not just the position but even the presence of
the BCP and therefore the BCP representation of the molecule.

We believe that since the core does not dominate BCP space,
our similarity measure in BCP space is more discriminative and
predictive. This opinion is mainly based on the Hammett QSAR
example presented below, but a glance at the representation of
the drug haloperidol in BCP space corroborates our view. For
details the reader is referred to2 but here we just reiterate the
main point, namely the astounding fine-tuning the BCP space
reveals in the classification and characterization of bonds. Figure
2a shows a stick diagram of haloperidol (C21O2NH23FCl), which
consists of four fragments: fluorobenzene, chlorobenzene,
4-hydroxypiperidine, and butyraldehyde.

Haloperidol has 51 bonds, each of which is represented as
one BCP in a 3D BCP space, spanned by the propertiesFb,
∇2Fb, andε. The complete representation2 shows that the BCPs
cluster up in 10 well-resolved clusters. Figure 2b shows a
representative BCP for each cluster. It has been observed2 that
the Carom-Carom cluster is in fact split in two: the smaller
subcluster represents the two pairs of benzene carbon-carbon
bonds adjacent to the C-F or C-Cl bond. These four bonds
show a somewhat higher ellipticity than the other members of
their cluster because halogens areπ-donors. Moreover, this fine-
tuning is even correct in predicting that fluorine is a stronger
π-donor than chlorine, since fluorine causes the largest increase
in ε. Furthermore, hyperconjugation can be spotted in the
structure of the Caliph-Caliph cluster. These and further observa-
tions increase the level of confidence in the power of the BCP
space to describe the electronic structure of a molecule
compactly and reliably.

5. Similarity in BCP Space

Once a meaningful description of a molecule in some space
has been obtained, there are many ways to measure the similarity
between molecules. The chemical descriptor vector described
above can be operated upon via a host of mathematical tools
such as equivalence, matching, partial ordering, proximity, graph
theory, and even group theory.26 Here we will restrict ourselves
to a simple Euclidean distance measure in BCP space. The
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distancedij between two BCPsi and j in our 3D BCP space is
defined as follows:

The distanced(A,B) between two molecules A and B is then
defined as a sum of these BCP distances via eq 2. The lower
the valued(A,B), the more similar the two molecules are.

Equation 2 raises an important question: which BCPs of A
should be compared to which BCPs of B? One answer is to
compare every BCP in A with every BCP in B. Although such
a total distance provides a valid measure between twoentirely
different molecules, it would not be an effective distance to
gauge the similarity between a set of congeneric molecules that
typically appears in QSAR studies. As explained in the next
paragraph it is straightforward to include only the distances
between twocorrespondingBCPs in molecule A and molecule
B. It is significant to realize that this is an a priori matching
procedure but that it is a perfectly natural and unbiased mode
of operation in most QSAR molecular sequences that one could
study.

The “raw” distance defined in eq 2 should actually be
modified because the three components constituting this distance
have different dimensions. In most accounts on clustering, for
example, standardization of the variables to zero mean and unit

variance is recommended, using the standard deviation from
the complete set of entities.28 This means that a variablex is
replaced by (x - µ)/σ, wherex is Fb, ∇2Fb, and ε. This can,
however, have the serious effect of diluting differences between
groups on the variables that are the best discriminators.
Preliminary work on the example below, however, shows that
our overall conclusion is only moderately dependent on whether
the variables are standardized or not.

6. The Hammett Equation

Here is not the place to extensively review the Hammett
equation since it is well-known physical organic chemistry
textbook material, but a few key points must be made to clarify
the terrain of action of our method. Already in the thirties it
was observed that equilibrium constantsK of reactions of
compounds differing only in a substituent were in fact correlated
in a simple way. To express this remarkable correlation,
Hammett introduced a substituent constantσ as the logarithm
of the ratio of the ionization constant of a substituted benzoic
acid (substituentS) to that of benzoic acid itself in water solution
at 25°C as

Obviously, theσ value for benzoic acid itself is zero. Figure
3 summarizes in an abstract way the general situation that a
relation such as eq 3 describes. The reaction at hand is S-Ph-
COOH+ H2O ) S-Ph-COO- + H3O+ where Ph represents
the phenyl group. Clearly, the phenyl group is the molecular
skeleton marked in Figure 3, COOH is the reactive centerR
and the substituents are given below, e.g., OCH3. Hammett’s
relationship can be generalized to other reactions with different
molecular skeletons and sets of substituents, thereby introducing
the reaction constantF (not to be confused with the electron
distribution), which is set to unity for benzoic acid.

If the equilibrium constants for several examples of a
particular reaction of aromatic molecules are known, the
Hammett equation can be used to estimate the equilibrium
constants withdifferent ring substituents with knownσ con-
stants.29 The beauty and perhaps mystery of the Hammett
equation is that we can predict the acidity of a molecule without
a detailed understanding of how the reaction equilibrium is
reached. A completeab oVo prediction would require a
sophisticated molecular dynamics simulation at a time the liquid
structure of even pure water is still not fully understood.
Everything seems to be governed by the electronic structure
that the substituent transmits to the reactive center via the
molecular skeleton. That regularities embodied in the Hammett
equation appear at all is even more curious, realizing that the
equilibrium constant depends on∆G, which depends not only
on enthalpy∆H but also on the organization energyT∆S. One
still does not completely understand just why the Hammett
equation is so generally successful.1

Tables 1 and 2 quote theσ values of a selection of common
substituents (or probes) attached to a benzoic acid inpara and

Figure 2. (a) Stick diagram of a conformation of the drug haloperidol.
Only atoms that are not carbons (gray) or hydrogens (white) are labeled.
(b) Set of 10 representative BCPs of haloperidol represented in a 3D
BCP space spanned by the propertiesFb,∇2Fb, andε. Each BCP marks
one of the following types of bonds: CaromsCarom, CaromsH, CsCl,
CsF, CaliphsCaliph, CsN, CsO, CdO, OsH, and CaliphsH.

dij ) [(Fb,i - Fb,j)
2 + (∇2Fb,i - ∇2Fb,j)

2 + (εb,i - εb,j)
2]1/2

(1)

d(A,B) ) ∑
i∈A

∑
j∈B

dij (2)

Figure 3. General schematic representation of the essential constituents
of a set of molecules studied in connection with a linear free energy
relationship.

σ ) log
KS

KH
) pKa,H - pKa,S (3)
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metaposition, respectively. There are some discrepancies in the
listed values depending on the cited source, but all figures agree
that thepara substituents should be ranked as follows: NH2 <
OCH3 < CH3 < H < F < Cl < CN < NO2. Discrepancies
again occur formetasubstituents affecting the ranking only once
but the following order ensues from the majority of data: NH2

< CH3 < H < OCH3 < OH < CN < NO2. In the next section
we show how these rankings can be exactly predicted using
the proposed Euclidean distance similarity measure in BCP
space. Note that the OCH3 group appears at two different sides
of the H substituent, i.e., in thepara group compared to the
meta group. This difference in ranking will be correctly
predicted.

7. Example of the Application of BCP Space

We have looked at a set ofparaand a set ofmetasubstituted
benzoic acids, which we will discuss in turn. All ab initio wave
functions were obtained at the B3LYP/6-311+G**//B3LYP-6-
311+G** 30,31 level using GAUSSIAN94.32 The topological
analysis of the electron distribution was performed using
MORPHY98.33 Once all the BCPs are acquired, it is straight-
forward to find a one-to-one correspondence between the BCPs
of each molecule with respect to the BCPs of another molecule.
The maximal common subset of BCPs for which this cor-
respondence can be established is the union of the phenyl ring
and the carboxyl group because the substituents differ widely
in atom type. We measured the distance between all the
molecules using eq 2, yielding a matrix (for an example, see
Table 3).

How do we interpret a matrix of distances between molecules
in terms of a one-dimensional ranking? The full extent of this
problem cannot be tackled in this work, but it suffices here to
focus on one molecule (i.e., one column in the distance matrix)
and use the distances with respect to that molecule to rank all

molecules. A natural choice for the reference molecule is the
first or last member of a sequence, such as the NH2 or the NO2

substituent. Even if this substituent is not known a priori to be
the bound of a sequence, it will emerge automatically from
inspecting the distance matrix. Table 4 represents the substituent
sequences with respect to NH2.

The main point proven in Table 4 is that the experimental
substituent sequence isonly reproduced if we restrict our
similarity measure (i.e., distance in BCP space) to BCP
contributions (see eq 2) from the COOH group. Any inclusion
of BCPs from the phenyl group will seriously disrupt the
sequence. Consequently, our method points out where the
reactive center is for a given QSAR. Table 3 shows the distance
matrix for all eight molecules based on contributions from the
carboxyl group alone. It is clear from this table that the
experimental sequence is perfectly reproduced with respect to
any substituent. In other words each column confirms the
ranking obtained with respect to NH2. The same is true had we
restricted ourselves to CdO only. However, if we include only
the OsH BCP then the substituents F and Cl are swapped if
we take the molecules with the following substituents as a
reference: F, Cl, H, and CH3. Further observations confirm that
it is better to take the molecules at either side of the activity
scale (weakest and strongest) as references to be able to rank
the substituents. In other words, minor anomalies in the
reproduction of the experimental ranking may occur if the
distances are computed with respect to molecules with moderate
activity (i.e., ones from the center). The main problem is how
to rigorously obtain a one-dimensional ranking from a (two-
dimensional) matrix. Perhaps the substituents ought to be
represented in a two-dimensional space, as first suggested by
Craig, and our distances correlated to the “experimental”
distances appearing in the Craig plot.34 A complete understand-
ing probably requires an analysis using multidimensional scaling
(MDS).35

To further test the success of our method, we have generated
the wave functions of five moreparasubstituted benzoic acids:
COCH3, CHO, phenyl (Ph), OH, and O- . The sources cited in
Table 5 quote an experimentalσ value ranging from 0.44 to
0.52 for COCH3 and [0.42, 0.45] for CHO. Both COCH3 and
CHO are invariably bracketed by CN and Cl, which is exactly
what our method predicts with respect to any reference molecule.
The experimentalσ range quoted for phenyl is [-0.01,+0.05],
many values being extremely close to zero. Therefore phenyl
and hydrogen are hard to distinguish. In the distance matrix for
phenyl six columns predict that Ph is bracketed by H and CH3,
and one column predicts that Ph is bracketed by H and F. In
other words, Ph is predicted to lie on the wrong side of H with
respect to most substituents. If we adhere to the most recent
experimentalσ value of-0.01 (source D in Table 5) then we
predict Ph to be on the right side of H. The difference between
Ph and H is so subtle that it is at the limit of what our method
can currently offer.

TABLE 1: Selection of σ Values for a Few Common
Substituents Attached to Benzoic Acid in thePara Positiona

substituent A B C D E F

NH2 -0.57 -0.66 -0.66 -0.66 -0.66 -0.66
OCH3 -0.28 -0.268 -0.27 -0.268 -0.27 ?
CH3 -0.14 -0.17 -0.14 -0.17 -0.17 -0.17
H 0 0 0 0 0 0
F 0.15 0.062 0.15 0.062 0.06 0.06
Cl 0.24 0.227 0.24 0.227 0.23 0.28
CN 0.70 (1.00) 0.71 0.660 0.63 0.66
NO2 0.81 0.778 0.78 0.778 0.78 0.78

a Sources: A, March, J.AdVanced Organic Chemistry, 4th ed.; 1992;
Table 4, p 244. B, Hammett, L. P.Physical Organic Chemistry,1940;
Table I, p 188. C, Isaacs, N.Physical Organic Chemistry, 2nd ed; 1995;
Table 4.1, p 152. D, Carroll, F. A.Structure and Mechanism,1998;
Table 6.8, p 384. E, Traven, V. A.Frontier Orbitals and Properties of
Organic Molecules,1992; Table 1.4, p 8. F, Miller, B.AdVanced
Organic Chemistry,1997; Table 5.1, p 124.

TABLE 2: Selection of σ Values for a Few Common
Substituents Attached to Benzoic Acid in theMeta Positiona

substituent A B Cb D E F

NH2 -0.09 -0.161 -0.40 -0.16 -0.16 -0.16
CH3 -0.06 -0.069 -0.07 -0.069 -0.07 -0.07
H 0 0 0 0 0 0
OCH3 0.10 0.115 0.11 0.115 -0.12 ?
OH 0.13 ? 0.12 0.121 -0.002 0.12
CN 0.62 0.678 0.59 0.56 0.68 0.56
NO2 0.71 0.710 0.75 0.710 0.71 0.71

a Legend of sources is the same as in Table 1.b “Primitive”
(unaveraged) values.

TABLE 3: Matrix Containing the Distances in BCP Space
between thePara Substituted Benzoic Acidsa

NH2 OCH3 CH3 H F Cl CN NO2

NH2 0
OCH3 0.039 0
CH3 0.066 0.031 0
H 0.090 0.052 0.027 0
F 0.135 0.103 0.098 0.080 0
Cl 0.158 0.128 0.123 0.104 0.025 0
CN 0.261 0.232 0.228 0.207 0.130 0.105 0
NO2 0.305 0.276 0.272 0.251 0.175 0.149 0.044 0

a Only the 3 BCPs of the COOH group contribute to the distances.
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Until 1960 the experimentalσ value for OH and O- was
unavailable because of experimental difficulties.36 Hine was able
to present values for these substituents indirectly (using a
product rule) and proposedσ(OH) ) -0.21 andσ(O-) ) -0.71,
although other values have also been quoted (Table 5). When
we accept Hine’s OH value, our method correctly predicts that
this substituent is bracketed by OCH3 and CH3. The case of
O- is interesting because it offers for the first time the possibility
of extrapolation rather than interpolation. Indeed, the experi-
mentalσ value puts it outside the original [NH2, NO2 ] bracket,
i.e., left of NH2. We completely recover the correct experimental
sequence from the point of view of the O- substituent because
the distance between O- and NH2 is the smallest of all and
increases monotonically through the sequence OCH3 < CH3 <
H < F < Cl < CN < NO2.

We now discuss the results for themetasubstituted benzoic
acids. Note that we have deliberately included OH and OCH3

because they appear at the NO2 side of H instead of at the NH2
side in the case ofparabenzoic acids. This is important to prove
that our method is reliable in predicting such differences, as
indeed it is. Table 6 shows substituent sequences based on
various subsets of contributing BCPs. Again we retrieve the
main result that the reactive center COOH perfectly matches

the experimental sequence. Just as in thepara case, the CdO
sequence shares this property but the O-H sequence fails to
do so. It is curious to see that a BCP subset including the COOH
group and the C-C bond attaching COOH to the phenyl ring
also matches the experimental sequence unlike in theparacase.
The ranking based on the C-C BCP alone does not reproduce
the experimental sequence, however. In summary, that the
experimental sequence is only recovered from BCPs belonging
to the reactive center holds in bothpara and meta cases.
However, a fully automated and exhaustive search corroborating
this conclusion is warranted.

Finally, we have performed a simple one-dimensional linear
regression of the experimentalσ values versus the computed
similarity measure of eq 2. Figure 4 shows a regression plot of
the eight originalpara substituted benzoic acids (column A in
Table 1) against the proposed similarity distanced(NH2, S),
whereS is a substituent. The distance is computed with respect
to the NH2 substituent. The Pearson correlation coefficient for
this particular fit is 0.993, but similar values have been obtained
from alternative sources of experimental values (see legend of
Table 1). The lowest correlation obtained is 0.962 for the
experimental sequence markedC in Table 1 versus the distances
computed with respect to the most active substituent, i.e.,d(NO2,

TABLE 4: Ranking of Para Substituted Benzoic Acids According to Theirσ Values Based on Experiment and the Distance
Similarity Measure in BCP Space Restricted to Various Subsets of BCPsa

substituentsb

BCP subset
no. of
BCPs NH2 OCH3 CH3 H F Cl CN NO2

OH 1 NH2 OCH3 CH3 H F Cl CN NO2

CdO 1 NH2 OCH3 CH3 H F Cl CN NO2

COOH 3 NH2 OCH3 CH3 H F Cl CN NO2

CsCOOH 4 NH2 OCH3 F CH3 Cl H CN NO2

C6 6 NH2 CN CH3 OCH3 H Cl NO2 F
C6H4 10 NH2 CH3 OCH3 CN H Cl NO2 F
C6sCOOH 10 NH2 OCH3 CH3 Cl CN H NO2 F
C6H4sCOOH 14 NH2 OCH3 CH3 Cl H CN NO2 F
SsC6H4sCOOH 15 NH2 CN H OCH3 CH3 NO2 F Cl

a The ranking is relative to NH2. The letter S denotes a general substituent attached to the phenyl ring (see Figure 3).b Experimental sequence.

TABLE 5: Experimental σ Values for the Five Substituents
the Brackets of Which Were Theoretically Predicteda

substituent A B C D E F

O- -0.81 ? ? ? -0.52 -0.81
OH -0.38 ? -0.22 -0.37 -0.36 -0.37
phenyl (Ph) 0.05 0.009 0.05 -0.01 0.01 ?
COCH3 0.44 ? 0.47 0.502 0.52 ?
CHO ? ? 0.45 ? 0.45 0.42

a Legend of sources is the same as in Table 1.

TABLE 6: Ranking of Meta Substituted Benzoic Acids
According to Their σ Values Based on Experiment and the
Euclidean Distance Similarity Measure in BCP Space
Restricted to Various Subsets of BCPsa

substituentsb

BCP subset
no. of
BCPs NH2 CH3 H OCH3 OH CN NO2

OH 1 NH2 CH3 OCH3 H OH CN NO2

CdO 1 NH2 CH3 H OCH3 OH CN NO2

C-C(OOH) 1 NH2 CH3 H OCH3 OH NO2 CN
COOH 3 NH2 CH3 H OCH3 OH CN NO2

C-COOH 4 NH2 CH3 H OCH3 OH CN NO2

C6 6 NH2 CH3 CN OCH3 H OH NO2

C6H4 10 NH2 CH3 CN OCH3 H NO2 OH
C6-COOH 10 NH2 CH3 CN OCH3 H OH NO2

C6H4-COOH 14 NH2 CH3 CN OCH3 H NO2 OH
S-C6H4-COOH 15 NH2 H CH3 OCH3 NO2 OH CN

a The ranking is relative to NH2. The letter S denotes a general
substituent attached to the phenyl ring.b Experimental sequence.

Figure 4. Simple regression analysis for the eight originalpara
substituted benzoic acids (column A in Table 1). The experimentalσ
parameter is plotted against the proposed similarity distanced(NH2,S),
where S is a substituent. The distance is computed via eq 2 and the
reference substituent is NH2, which has the lowest activity. The
correlation coefficient is 0.993.
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S). In summary, regression analyses yield excellent results,
enabling fully quantitative QSAR predictions to be made from
BCP space.

8. Arising Issues

Ultimately, we want to use our similarity measure in the
context of drug design. For example, Lawrence and co-workers
have synthesized a few dozen substituted (E)-1-phenylbut-1-
en-3-ones and tested their cell growth inhibitory properties in
terms of the antitumor activity index IC50.37 With present day
computers it is perfectly feasible to obtain wave functions for
all these compounds within a week and to represent them in
BCP space. Most encouraging results have already been obtained
for the Lawrence QSAR where we were able to confirm a
conjecture about the active center of the drug.38 We expect our
similarity index to be successful in other anticancer drugs and
to be able to bracket a new substituted drug by substituted drugs
already present in current experimental sequences. Of course,
regression analyses, which are ubiquitous in QSAR work, will
be performed in more detail. That BCPs are reliable to measure
inductive and mesomeric effects in aromatic rings caused by
various substituents was already known to Bader and Chang39

in the late eighties based on a careful study of electrophilic
aromatic substitution and the Taft resonance parameterσR

o. Here
we have put forward the main idea behind our approach, which
was illustrated via a simple but powerful example.

As our intended research program unfolds, several issues
appear that need careful investigation. Some are already under
investigation and will be published in due course. The following
four questions call for systematic study: What is the actual
dimension of BCP space? Or, more precisely, which BCP
properties contribute to the best possible reproduction of an
experimental sequence? Also we must ensure that the included
properties are actually independent. It may turn out that BCP
spaces of different dimensionalities are needed for different
QSARs. Principal component analysis (PCA)40 and multidi-
mensional scaling (MDS) are appropriate statistical tools to
tackle these concerns. The second question is how reliable BCP
space really is on a practical level, in particular with regard to
large systems. Basis set variation, transferability studies, and
cluster techniques will help to settle this matter. Some issues
raised in the first two questions have already been investigated.41

The third question is whether the Euclidean distance (including
the standardization of the variables) is the best similarity mea-
sure for our purposes. Indeed, alternative measures26 operating
in BCP space may have a higher discriminative capability. The
final question is how conformational changes appear in BCP
space. We have deliberately quenched this degree of complexity
by looking at fairly rigid systems, but many molecules such as
neurotransmitters are known to be conformationally flexible.

9. Conclusion

Molecular similarity measures are important to guide us in
the hunt for new medicines and agrochemicals. Quantum
similarity measures have been proposed before under the
hypothesis that molecular properties can ultimately be reduced
to the electron distribution. We believe that they are unneces-
sarily cumbersome and biased by chemically unimportant
regions. Consequently, we propose a novel quantum similarity
measure in BCP space. This abstract space is based on the theory
of atoms in molecules, which enables one to rigorously extract
chemical information from a wave function and represent it
compactly and reliably. Using a simple distance in a 3D BCP
space (with componentsFb, ∇2Fb, ε) we measure the similarity

between molecules. Given a set of substituted congeners, the
resulting distance matrix allows us to rank the molecules
according to their activity.The experimental actiVity sequence
will only be reproduced if the distance measure is confined to
contributions from the BCPs from the common actiVe center of
the molecules.This approach is general and can be applied
whenever an experimental QSAR is available. We have il-
lustrated the success of this approach on the oldest and probably
best known QSAR: the Hammett equation forpara andmeta
substituted benzoic acids. In view of the scope of the present
research program, several issues could only be touched upon.
However, our approach is so simple and promising that we plan
to apply the method to real life medicinal questions.
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